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Patient journey

Is treatment good
for patient or

not? Is there a
better option?

Is this treatment
working? What
about treatmen
toxicities?
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HTA perspective

Is treatment
cost-effective? Is
there a more

cost-effective
option?

-

Does this
treatment
continue to
improve QoL?
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Adapting treatment schedules

— Treatment selection

Response Assessment
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Continue treatment?
Switch treatment?
Pause & restart?

Stop & monitor?
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Balancing risks and benefit

— Treatment selection

Response Assessment
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What Is Important When Making Treatment Decisions in
Metastatic Breast Cancer? A Qualitative Analysis of
Decision-Making in Patients and Oncologists
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The percentage of thematic references referring to specific themes.
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Assessment of risks and benefit:
Al-based Quantitative Imaging Biomarkers
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Responding
to freatment

Resistant
to tfreatment

Medium
toxicity risk

High
toxicity risk

Yip et al. Phys Med Biol. 2014
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PRECISION MEDICINE

- The problem of response heterogeneity
- The problem of treatment resistance
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therefore different treatments need to be chosen

[ Not all patients respond the same to any given therapy,
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Just as not all patients respond the same to any given therapy,
not all disease sites within a given patient respond the same.
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Why heterogeneity?

Spatial Heterogeneity Temporal Heterogeneity
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Treatment response heterogeneity
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Treatment response assessment —
Al-based approach

Time point 1 Response Map Time point 2

Automatic and Quantitative
Assessment

Our software automatically detects
and classifies all lesions

US Patents 9603567, 10445878
Licensed to our spin-off:
AlQ Solutions
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Treatment response assessment —
Al-supported workflow
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Treatment response assessment —

Al-supported workflow

4 Al 4 Al

~

p
Not/7\) Al
il

: b

Identification/

\ Scanning / \ Classification /

Localization/
Quantification

N

Timepoint 1
VN

P X
/ | \
[ Y
R

-~ %

. ¥ ..‘
@ . e -

School of Medicine
and Public Health

UNIVERSITY OF WISCONSIN-MADISON

Matching/

Quantitative
assessment

Response

\ Assessment /

Timepoint 2

\_ report Y,

Response Map

-
Egr
‘f‘ o i ! New
:‘..‘ '.t ] Progressing
-
diou it K Stable
e ‘i_,y- Partially Responding

Complete Responding

Yip et al. Phys Med Biol. 2014

Santoro-Fernandes et al. Phys Med Biol. 2021
US Patent 9,603,567



Treatment response heterogeneity
Spatial heterogeneity

= Retrospective theranostics
study of 118 patients 100 ——
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Treatment response heterogeneity
Spatial heterogeneity
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Treatment response heterogeneity

Temporal heterogeneity ‘
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Treatment response heterogeneity
Temporal heterogeneity
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Response Response
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Sequential ®3Ga-DOTATATE PET/CT imaging during Lutathera therapy



Treatment response heterogeneity
Temporal heterogeneity
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Treatment response heterogeneity
Temporal heterogeneity
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Why is this?

Percent of ROIs

Cu-DOTATATE, Ga-DOTATATE, FES, PSMA, or FAraG «

with CT or FDG (53 patients)

1.0
SOC

mmm Both
B Targeted

il
0.6 A | | ||
I
0.4
I
Al
1

e Patient

Only 23% of patients all
lesions identified by the
targeted tracer

77% of patients have
lesions found by
standard of care
imaging, missed by
targeted tracers

66% of patients have 5
or fewer lesions missed
by the targeted tracer
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How can we optimize treatments?
Theranostics example

. Non Non
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How can we optimize treatments?
Theranostics example

Non
PRRT
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How can we optimize treatments?

Theranostics example

N V\{ldespread » Change approach
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=25 7}&\
S T .
Targeted ! S _limited , Combination 2.
Tracer discordance = Treatment i 2E
N (localized ablation, etc.)
Standard Before
of Care therapy
Imaging  initiation
No

» PRRT

®  discordance

School of Medicine
and Public Health
UNIVERSITY OF WiSCONSIN-MADISON

o

L‘I
3

¢
2

]
-
L




How can we optimize treatments?
Theranostics example

. Non
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How can we optimize treatments?
Theranostics example
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Targeting individual lesions

CrArn—N2A7 N 1N

1.0
—— QOriginal
2 —— Ablated
- o) _ : :
i E 08 Simulated Median PFS
Y24 o Improvement of 525 days
# 5l g
i - }?0 1 c 061
4 2
: 0
' & )]
] . 8
00 0.4 1
O
| -
V4 [
) I
New — DZ_ ——
Increasing
Stable
Decreasing
Disappeared 0.0 - T T T T T T T T
0 250 500 750 1000 1250 1500 1750 2000

Days

School of Medicine .
@ agpuplcHeatn, . Courtesy of AIQ Solutions



Summary

= Optimizing cancer treatments is complex:
— Balancing risks and benefits of individual patients
— Accounting for spatial and temporal (response) heterogeneity

= Decision making in radiotheranostics has two critical points:
— Treatment selection - is patient a good candidate (concordance analysis)
— Treatment optimization - how much/how long to treat (response analysis)

= Impact on HTA:
— Treatment selection - radiotheranostics is not cost effective for all patients!
— Treatment optimization — more RPT does not always mean improved QolL!
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Thank you
for your attention
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