President’s Message – Prof. Azam Niroomand-Rad, Ph.D., President IOMP

Dear Fellow Members of IOMP,

I am pleased to inform you that on October 15, 2004, the proposal for the formation of an ‘International Commission on Medical Physics’ (ICOMP), which will be an ‘Affiliated Commission’ of the International Union of Pure and Applied Physics (IUPAP) was approved enthusiastically by the IUPAP Council and Commission Chairs Meeting in Mumbaï, India. At this meeting, Dr. Pal Ormos, Chair of C6, Commission on Biophysical Engineering, introduced Professor Moira Steyn-Ross, Department of Physics & Elec-

tronic Engineering, University of Waikato, New Zealand, as a potential delegate to ICOMP from C6 who is interested in collaborating with medical physicists. Moreover, Prof. Gunnar Tibell, Chair of C14, Commission on Education from Uppsala University in Sweden, also expressed interest in collaboration with us.

The next step in finalizing IOMP affiliation with IUPAP is to present this proposal to the IUPAP General Assembly at the October 2005 meeting in Cape Town, South Africa. Once this proposal is approved we can officially invite IUPAP members from C6, C14, and/or any other physics group (Commission) within IUPAP to join the IOMP International Advisory Board. Moreover, our members will be able to take part and collaborate in the activities of the 18 sub-disciplinary Commission and 3 Affiliated Commission in IUPAP. See http://www.iupap.org for more details. Finally, we would be able to apply for a modest conference grant (~$1000 / year, or $3000.00 every 3 years) for our IOMP (Int’l Conference on Medical Physics) conferences.

I am also very pleased to inform you that IOMP is now an “official” co-sponsor of the World Congress on Physics and Sustainable Development (WC-PSD) by contributing $5,000 towards the travel expenses of medical physicists from developing countries to Durban, South Africa, October 31 – November 2, 2005. We have also agreed to send at least one delegate to this Congress.

As you are aware, the main organizers of the WC-PSD are IUPAP, ICTP (International Centre for Theoretical Physics, Trieste, Italy), and the SAIP (South African Institute of Physics). See http://www.wcpsd.org for more details. However, we plan to demonstrate to the participants of the WC-PSD (namely government agencies and scientific communities on the international arena) a leading role for IOMP in all aspects of physics that relate to health and medicine. We plan to focus on issues related to developing countries – such as lack of resources and government support. IOMP should emphasize the healthcare improvement through improved education and training of medical physicists. Even though the “professional aspects” of physics is not discussed at this conference, I believe that IOMP “professional” efforts in establishing national medical physics associations are fundamental in developing and sustaining medical physics in developing countries. Lastly, we want to present an action plan for what the IOMP can do to help solve some of the pressing world problems related to health and medicine.

To facilitate IOMP input to the WC-PSD, we should coordinate and communicate our plan through two (IOMP) individuals who have been asked to serve on the WC-PSD by the main organizers - namely ICTP: Perry Sprawls (serving as Co-Chair of the Planning Committee on Physics and Health) and Slavik Tabakov (serving as a member of the Planning Committee). We want IOMP to have an important role in planning the Physics and Health theme. This can only be achieved if (7.500 or collectively) submit and present our ideas and projects on issues related to medical physics to the Congress. To succeed, we particularly need to hear from the medical physicists in developing countries.

Prof. Azam Niroomand-Rad, President of IOMP
President’s Message

To achieve the above stated goals, we could consider the following project-like suggestions put forth by the Planning Committee:

1. E-Teaching Possibilities for Medical Physicists in Developing Countries:
 Example: To demonstrate the success of the Slavik’s EMERALD project in teaching diagnostic/nuclear materials to medical physicists in developed countries (namely Europe) and,
 (1a) to expand the teaching materials to radiation therapy and
 (1b) to have these materials available to all medical physicists in developing countries.

2. Short-Term Topical Courses/Workshops for Medical Physicists in Developing Countries:
 Example: To demonstrate the success of the one-week annual AAPM/IOMP International Scientific Exchange Programs (ISEP) courses/workshops in teaching radiation therapy physics (since 1992) and diagnostic/nuclear medicine physics (since 2003) to medical physicists in developing countries and
 (2a) to expand the program to more than one ISEP program per year to reduce the existing waiting time for these courses which is often 3 to 4 years and
 (2b) to expand the program to offer “follow-up” ISEP topical courses/workshops to the developing countries that have already received an ISEP course/workshop but are interested in additional topical refresher courses.

Compilation of Medical Physics Graduate Programs - Worldwide:
Examples: To demonstrate the value of compiling the information on medical physics graduate programs (including the syllabi of the required academic courses as well as clinical training opportunities, cost and length of the program, visa and language requirements, and availability of fund and scholarship for the international students) and
(3a) to expand on the existing IOMP compilation of the medical physics graduate programs to include at least one program from each country which offers one (18 countries are listed as of writing of this report), and
(3b) to make this information readily available to the medical physicists who are interested to develop a graduate medical physics program in their own countries, and
(3c) to make this information readily available to the students in developing countries who are interested in pursuing medical physics education either in their own countries or in a nearby country that they may find affordable.

Other Avenues to Improve Medical Physics Practice in Developing Countries:
Example:
(4a) to demonstrate the value of establishing national medical physics association for developing countries where one does not exist and show its impact on education and training of the medical physicists and on promotion of medical physics practice, and
(4b) to discuss the IOMP ongoing efforts in trying to have the medical physics profession be listed in the ILO (International Labor Organization) list of occupations and seek support from international delegates who are attending the WC-PSD.

As always, we are looking to the members for direction. Please work with us to improve our organization by taking part in the IOMP initiatives and providing us feedback.

PROCEEDINGS OF WORLD CONGRESSES – Chicago 2000 and Sydney 2003
There are a substantial number of CDs on the proceedings of both Congresses available. Anyone interested in receiving a copy should contact the Secretary-General peter.smith@mpa-i.obs.uk

The only charge will be postage.

(continued from page 1)
First International Prize for Education and Training

The Eu Leonardo Da Vinci Award - Comes to Medical Physics –
Slavik Tabakov, Ph.D., Chairman ETC

During the period October 2004 - March 2005 the IOMP Education and Training Committee supported the Regional Course/Workshop “Current Practices and Advances in Radiation Therapy Physics”, at Manila, Philippines. The course, co-sponsored by AAPM, is planned for August 2005.

Additionally ETC initiated a discussion for development guidance and procedures for validation of Medical Physics courses. This was sent to the IOMP ExCom as a proposal for IOMP project EMERALD to be presented at the World Conference on Physics and Sustainable Development, Durban, November 2005. The project objective will be to develop a Guide e-book with Model Curriculum for educational Medical Physics courses (also called MSc-level or post-graduate courses, and normally with duration of 1 year), which to be used by countries without experience/guidance in this field.

During December 2004 the International Medical Physics training project EMIT was awarded the Leonardo da Vinci Award to Dr Slavik Tabakov (EMIT Coordinator) and Dr Cornelius Lewis (representing the Contracting Institutions King’s College London and Kings College Hospi-
tal) for their EMIT project EMIT (European Medical Imaging Training). The project consortium EMERALD developed a new international pilot project for education of new generations and to their update.

All EMIT materials are commercialised and the income is directed to their update.

The quality of EMIT project results led to its nomination in mid-2004 for the prestigious inaugural award for education of the European Union - Leonardo da Vinci. A total of 32 projects were nominated chosen from more than 4000 education and training activities in the last decade. The award ceremony took place at the high-level Conference of all EU Ministers for Education, held in Maastricht, Holland, 14-16th December. At this event EMIT project Consortium was announced as one of the three Winners of the first Leonardo Da Vinci Award. The specially made trophy (with engraving from Leonardo’s “Flying man”) was presented by Mr Nicolas van der Pas (EU Director General for Education and Training) to Dr Slavik Tabakov (EMIT Coordinator) and Dr Cornelius Lewis (representing the Contracting Institutions King’s College London and Kings College Hospi-
tal). Without doubt this Award for a Medical Physics project, presented in the presence of all Ministers of Educations of the EU countries will be a boost for the development of the profession. EMIT Consortium thanks heartily to all colleagues who contributed to the development and assessment of these important for our profession e-Learning materials.

EMIT e-learning materials are original. Each of both modules (US and MRI) is structured and has a common length of approx. 4 months. During this time training will have to acquire most necessary professional skills (competencies). Each EMIT training module incorporates: List of Competencies (based on IPEM training scheme); Structured Timetable (detailed curriculum); Educational Image Database (with jpg images); Workbook with practical tasks (made as a Web distributable e-book) and a Course Guide. The volume of EMIT e-learning materials includes more than 1900 images and 600 pages explanations of the tasks (including various practical protocols). These are engraved on 2 CD-ROMs and placed on a special Web server “Training on Demand”. All these materials are handled by an Image Database (running directly the CD) and by an user-friendly uncomplicated HTML shell (which incorporates PDF text, hyperlinked with the corresponding images). This simplicity allows for the user to learn directly through his/her existing computer and its Internet browser and Adobe Acrobat Reader, without dependence of external software. The whole contents of the Web server is also engraved on the CD (as an e-book), thus eliminating the problems with Internet speed. These materials are commercialised and the income is directed to their update.

All EMIT materials are produced in English and French. Following the success of the previous project EMERALD, EMIT Consortium made appropriate steps to support the international use of these training materials. For this reason EMIT developed additionally a Digital Dictionary of terms covering the whole field of Medical Imaging. The Dictionary includes more than 3000 terms and cross-translates to/from any of English, French, German, Italian, Swedish, Portuguese and Spanish. The Dictionary is engraved on each EMIT CD and includes possibility for future expansion and inclusion of new languages.

Additional discussion for development and assessment of these important for our profession e-Learning materials.

Report from the Education & Training Committee –
Slavik Tabakov, Ph.D. Chairman IOMP - ETC

The success of EMERALD led to a new international pilot project for developing training e-learning materials on Ultrasound and Magnetic Resonance Imaging Technology (EMIT). The partners in the project EMIT form a Consortium of Universities and Hospitals: King’s College London; University of Lund; University of Florence; University of Lund; University Hospital, Hospital Albert Michallon Grenoble; King’s College Hospital; Lund University; Hospitals and Universities: King’s College London; University of Lund; University of Florence; and the European Federation of Organisations for Medical Physics. Support Letter for the project was issued by IOMP as well.

All EMIT materials are produced in English and French. Following the success of the previous project EMERALD, EMIT Consortium made appropriate steps to support the international use of these training materials. For this reason EMIT developed additionally a Digital Dictionary of terms covering the whole field of Medical Imaging. The Dictionary includes more than 3000 terms and cross-translates to/from any of English, French, German, Italian, Swedish, Portuguese and Spanish. The Dictionary is engraved on each EMIT CD and includes possibility for future expansion and inclusion of new languages.

The quality of EMIT project results led to its nomination in mid-2004 for the prestigious inaugural award for education of the European Union - Leonardo da Vinci. A total of 32 projects were nominated chosen from more than 4000 education and training activities in the last decade. The award ceremony took place at the high-level Conference of all EU Ministers for Education, held in Maastricht, Holland, 14-16th December. At this event EMIT project Consortium was announced as one of the three Winners of the first Leonardo Da Vinci Award. The specially made trophy (with engraving from Leonardo’s “Flying man”) was presented by Mr Nicolas van der Pas (EU Director General for Education and Training) to Dr Slavik Tabakov (EMIT Coordinator) and Dr Cornelius Lewis (representing the Contracting Institutions King’s College London and Kings College Hospi-
tal). Without doubt this Award for a Medical Physics project, presented in the presence of all Ministers of Educations of the EU countries will be a boost for the development of the profession. EMIT Consortium thanks heartily to all colleagues who contributed to the development and assessment of these important for our profession e-Learning materials. All information for the EMERALD and EMIT projects (plus a 30 MB demo) is available from their Web site: http://www.emerald2.net
Is ‘Physics for Health’ the same as ‘Medical Physics’? This is not just semantics but raises the issue of whether we, as a profession, are fully contributing to all areas of health and well-being that we could. What should IOMP be doing if there are underdeveloped areas?

These thoughts have been prompted by considering the part IOMP should play in the World Health Congress on ‘Physics and Sustainability’ (South Africa, November this year) where one of the four themes is ‘Physics and Health’. Underdeveloped areas can either be at the boundaries of our profession or healthcare problems that medical physicists are not focussing on. Medical physics activities worldwide tend to deal with healthcare issues arising from the historical development of medical physics in Europe and America and the profile of diseases found in those regions - heart disease and cancer in particular. The disease profile in other continents is very different. HIV/AIDS is the leading cause of death among adults aged 15-19 worldwide. Tuberculosis, HIV/AIDS and malaria kill over 6 million people each year.

The above is not intended to lessen the importance of more traditional aspects of medical physics in developing countries. The World Health organisation (WHO) recognises that access to health technologies is one of the most distinct differences between rich and poor counties and that a strong mesh of health technologies is one of the most fundamental prerequisites for sustainable and self-reliance of health systems. In its plans for ‘Essential Health Technologies’ for 2004-2007 the WHO has identified diagnostic imaging as one of the major challenges - some three-quarters of the world’s population have no access to diagnostic services (www.who.int/eht).

IOMP has as one objective ‘To contribute to the advancement of medical physics in all aspects’, with medical physics being defined as ‘...using scientific (mainly physics) principles, methods and techniques in practice and research for the prevention, diagnosis and treatment of human disease, with a special goal of improving health and well-being’. Plenty of scope therefore for medical physicists in the first and third world counties to apply both established and emerging areas of physics, and closely related areas, to the challenges of healthcare worldwide. Of course, most medical physicists are employed to deliver a specific service and have no time for exploring new areas. Perhaps IOMP should be identifying areas and alerting funding bodies. Even if some healthcare problems seem unmanageable to the attention of physicists, a very small contribution to a large problem can be significant.

The above thoughts were also stimulated by my attendance in January on behalf of the International Union of Physical and Engineering Sciences in Medicine (IUPESM) at a of a Inter-Union working group held at the International Council of Scientific Unions (ICSU) in Paris. The aim was to finalise a document for presentation to ICSU proposing the establishment of an ICSU programme ‘Science for Health and Well-being’ and to requesting initial funding. Readers will recall that IUPESM is the umbrella organisation for medical physics (IOMP) and medical engineering (IFMBE) and IUPESM is a member of ICSU, which is a non-governmental organisation representing a global membership that includes both national scientific bodies and international scientific Unions. The proposed programme will focus on the contribution that cross-disciplinary research can play in tackling health and well-being issues. The proposal includes two working papers from IUPESM on the Impact of Technology on Hypercommunical Disease Processes’ and ‘Science and Technology in the Care of Patients and Persons with Disabilities’ (see www.iupesm.org) A number of other Unions are involved, not only those directly involved in health, such as the ‘International Union of Biological Sciences’ but ones such as the ‘International Geographical Union’. ICSU issued a draft Strategy for 2006-2012 in February and this identifies four themes, with ‘Human Health’ as one of these. The Strategy will be finalised and the outcome of our proposal will be known by the autumn.

The IOMP executive Committee (EXCOM) had a virtual meeting in January and notes of it are on the IOMP website. EXCOM warmly welcomed and approved (on an interim basis and subject to formal Council ratification) an application by the Mexican Federation of Organisations for Medical Physics. The Federation is composed of three bodies - two of which are existing members of IOMP (SOFIMED NL and AMFMP) and these two organisations are withdrawing their separate membership and it represents 50 medical physicists. EXCOM agreed that IOMP should prepare a strategy with a view to formal approval by Council in 2006, after full consultation with all interested parties. Any ideas and proposals are most welcome. A budget for 2005 was also approved.

The IOMP website now has dedicated areas for the Equipment and Library programs. The ‘Global OnLine Medical Physics Book’ (GOMP) website has been transferred to the IOMP site (under ‘Education and Training’).

Report of the Scientific Committee — Carl Borsos, D.Sc., Science Committee Chair

The IOMP SC was invited to present: Medical Physics: An International Perspective to the Joint Meeting of the National Society of Black Physicists and the National Society of Hispanic Physicists, held in Orlando, Fl, February 17-19. She discussed the role of the IOMP and its committees’ activities.

The two radiation oncology societies in Latin America, the Círculo de Radioterapeutas Latino Americanos (CRILA) and the Grupo Latinoamericano de Curterapia y Radioterapia Oncológica (GLAC-RO) organised a Joint Congress in Lima, Peru, with significant participation of ALFIM and ALFIM members, March 29-April 2, 2005 to form a new society: Asociación Latino Americana de Terapía Radiante y Oncología (ALATRO). The IOMP SC was represented by Dr. Maria Esperanza Castellanos, ALFIM liaison to the IOMP SC. The Chair of the IOMP SC participated in some clinical sessions, discussing the role of the medical physicists in quality assurance programs and in the investigation of accidental medical exposures.
The following events can be found on the online calendar of the journal “Medical Physics” at http://medphys.org/calendar/. Please email your international events to the Calendar Editor, Carter Schroy, at EventsEd@aol.com for inclusion in MPW. Deadlines for MPW are April 1 and October 1 for issues that are mailed several weeks later.

28 June - 1 July 2005
14th Int’l Conference of Medical Physics, Nuremberg, Germany
14th International Symposium on Microdosimetry (MICROS 2005); Venice, Italy

28 July - 1 Aug 2005
14th International Conference of Medical Physics (EFOMP) and the 36th Annual Meeting of the German Society for Medical Physics (DGMP) and is being held jointly with the 39th Annual Meeting of the German Society for Computer Science; Washington DC, USA

14-17 September 2005
14th International Symposium on Medical Dosimetry (MIROS 2005); Venice, Italy
An Interdisciplinary Meeting on Sensing Radiation Quality; Madison, WI USA

18-20 September 2005
7th Int’l Conference on Dose, Time, and Fractionation Multi-Modality Based Modulation of Dose, Time, and Fractionation Using Modern Tools; Madison, WI USA

9th International Workshop on Electronic Portal Imaging (EPID’05); Melbourne, Australia

28 June - 1 July 2006
ICMP2006 - Workshop on Alternatives to Mammography; Copenhagen, Denmark

World Congress on Medical Physics and Biomedical Engineering 2006
Aug. 27 - Sept. 1, 2006 COEX Convention & Exhibition Center Seoul, Korea, Hosted by KOSMBE, and KSMP

Status AAPM/IOMP Libraries April 2005 – Allan Wilkinson, Ph.D., IOMP Curator of Libraries

We currently have 68 active libraries in 41 countries. Active status is maintained by returning an update questionnaire every 2 years. The 2004 update questionnaire was sent to 76 libraries in April 2004. By December 2004, responses from 41 libraries had been received. There are 4 libraries that sent updates in 2003. A second request for updating the library information was subsequently sent to the 25 libraries that had not yet responded. To date, we have received re-sponses from 7 of these. One further attempt to contact the remaining 18 libraries will be made shortly. After, that, non-responders will be placed on the inactive list.

There have been 6 private donations of journals/books in the past year to Cameroon, Costa Rica, India, Pakistan, Thailand, and Turkey. We are in the process of assigning 2 more private donations to deserving libraries.

Jennifer Davis at AAPM coordinates the donations of Medical Physics Journal subscriptions. She informed us that 68 members donated their 2005 subscriptions to the Library Program. We have e-mailed her the list of current address for the 68 libraries.

Cigarette Effects, and Their Consequences for Low Level Risk Assessment and Radiation Therapy http://medphys.org/library/10-2006/2/5

AAPM 47th Annual Meeting. Seattle, WA USA
24-25 July 2005
AAPM 47th Annual Meeting. Seattle, WA USA

AAPM 47th Annual Meeting. Seattle, WA USA
24-28 July 2005
AAPM 47th Annual Meeting. Seattle, WA USA

AAPM 47th Annual Meeting. Seattle, WA USA
24-28 July 2005
AAPM 47th Annual Meeting. Seattle, WA USA

AAPM 47th Annual Meeting. Seattle, WA USA
24-28 July 2005
AAPM 47th Annual Meeting. Seattle, WA USA

AAPM 47th Annual Meeting. Seattle, WA USA
24-28 July 2005
AAPM 47th Annual Meeting. Seattle, WA USA
It is with great personal and professional sadness that I inform you of the passing of Professor John R. Cameron on March 16, 2005 in Gainesville, Florida, USA, from diabetic complications. He was 82 years old and is survived by his wife Lavonda and two daughters, Anne Marie Skye and Carol Cameron. With the death of Prof. Cameron, our organization has lost a beloved founder, a great innovator, and an internationally acclaimed scientist in the medical applications of physics.

Prof. Cameron attained many honors throughout his distinguished scientific career, including the William D. Coolidge Award of the American Association of Physicists in Medicine (1980), the first Roentgen Centennial Commemorative Medal ever given to a medical physicist by the Radiological Society of North America (1995), and the first Marie-Skłodowska-Curie Award by our organization (2000). During his career, Prof. Cameron served as an advisor or consultant to numerous organizations including the International Atomic Energy Agency, the International Center for Theoretical Physics, the International Atomic Energy Agency, the International Atomic Energy Commission, the Nuclear Medicine Committee of the American Society of Radiology, and the University of Wisconsin (UW) in Madison. He received his B.S. (1947) in mathematics from the University of Chicago and his PhD (1952) in nuclear physics from the University of Wisconsin (UW) in Madison. He had subsequently founded the “medical physics” program at the UW and helped it to grow from one physicist to the first medical physics department in a medical school in the US by 1981. Prof. Cameron’s accidental life in physics and medical physics is best reflected in one of his physics colleagues that can be found at www.medphysics.wisc.edu.

Prof. Cameron dedicated his entire life to improving the medical physics profession in the US and many developing countries. He is well known for his original, forward thinking, and thought provoking presentations of controversial scientific subjects. His most recent efforts were to undo “radiation phobia” by informing the professionals and public about scientific subjects. His most recent efforts were to undo “radiation phobia” by informing the professionals and public about scientific and nonscientific exposures in terms of human exposure times to background radiation. He felt that profession itself is partly responsible for the public’s fears and misconceptions about ionizing radiation. He believed that low-level radiation is good and made it his crusade to inform the public of unjustified radiation phobia. (See his last paper in the Jan. 2005 BJR).

In addition to being an incredibly scientifically gifted individual, Prof. Cameron was a great educator with a sense of humor. He had the ability to present scientific concepts in a lucid and humorous manner that even a layperson could understand and enjoy them. He was a very generous, openhearted, spirited, and optimistic individual, who took joy in educating people. Prof. Cameron was very supportive of medical physics activities in developing countries as evident by his teaching (Haiti in Portuguese and Spanish) and by donation of QC tools, books and journals to the developing countries. We will all miss his selfless energy, dedication to education, and his wonderful sense of humor. Fortunately, our memory of him is preserved in his web site www.medphysics.wisc.edu/jrc/ and in the many videotaped interviews that he conducted of his colleagues for the AAPM History Committee.

Prof. Cameron served as an advisor or consultant to numerous organizations including the International Atomic Energy Agency, the International Center for Theoretical Physics, the International Atomic Energy Agency, the International Atomic Energy Commission, the Nuclear Medicine Committee of the American Society of Radiology, and the University of Wisconsin (UW) in Madison. He received his B.S. (1947) in mathematics from the University of Chicago and his PhD (1952) in nuclear physics from the University of Wisconsin (UW) in Madison. He had subsequently founded the “medical physics” program at the UW and helped it to grow from one physicist to the first medical physics department in a medical school in the US by 1981. Prof. Cameron’s accidental life in physics and medical physics is best reflected in one of his physics colleagues that can be found at www.medphysics.wisc.edu.

Prof. Cameron dedicated his entire life to improving the medical physics profession in the US and many developing countries. He is well known for his original, forward thinking, and thought provoking presentations of controversial scientific subjects. His most recent efforts were to undo “radiation phobia” by informing the professionals and public about scientific and nonscientific exposures in terms of human exposure times to background radiation. He felt that profession itself is partly responsible for the public’s fears and misconceptions about ionizing radiation. He believed that low-level radiation is good and made it his crusade to inform the public of unjustified radiation phobia. (See his last paper in the Jan. 2005 BJR).

In addition to being an incredibly scientifically gifted individual, Prof. Cameron was a great educator with a sense of humor. He had the ability to present scientific concepts in a lucid and humorous manner that even a layperson could understand and enjoy them. He was a very generous, openhearted, spirited, and optimistic individual, who took joy in educating people. Prof. Cameron was very supportive of medical physics activities in developing countries as evident by his teaching (Haiti in Portuguese and Spanish) and by donation of QC tools, books and journals to the developing countries. We will all miss his selfless energy, dedication to education, and his wonderful sense of humor. Fortunately, our memory of him is preserved in his web site www.medphysics.wisc.edu/jrc/ and in the many videotaped interviews that he conducted of his colleagues for the AAPM History Committee.
Donation of Used Equipment –

PRC Report for Jan.-June 2005

Mohammed K. Zaidi, Program Manager, IOMP Professional Relations Committee

Dr. Erich Gehrhardt, Praxis Dr. Angersten/Dr. Huber, Weitnburger Str. 11, D 90449 Nürnberg, Germany has very kindly donated a Multidata Treatment Planning System Version 2.4S to IOMP Equipment Donation Program. The TPS was used in their radiation therapy institute until January 2004 in routine patient planning. The Multidata TPS consist of: PC with MS-Window, 95, 128MB Memory, 3.5” Floppy, 2 Harddiscs (1.6/2 GB), SC5L-Controller, CR-ROM drive, CD-R-W-drive, 5.25” MOD Pioneer Drive, 10/100 network, keyboard, mouse, an processor (Multidata) 7766 cm (Digitizing area: 62x52 cm), background illuminated, fitting to the PC, inclusive cables. We used a 21” one, but it is not included in the donation. Software: Multidata System DSS 2.4S (Revision state 30 March2000) with option for CT-Scanner GE High Speed Advanced and Siemens, both via MOD or network, no DICOM, Software for converting measured profiles into the DSS-Syst- tem is included. With original Documentation and Software-Disks. The system works well and is complete. You just need a VGA monitor. This is being shipped to Institute of Nuclear Medicine, Oncology and Radiotherapy (NOR), Attn: Dr. Rafaqat Ali Jafri, Director, G-8/3, Islamabad, PAKISTAN. Necessary shipping ar-

rangements are being made.

A GE DMR mammographic machine will be shipped to Professor Dishedh Zahirahdahvi, Chief Oncologist, Oncology Scientific Center, Dushanbe, Republic of Tajikistan. It is very kindly donated by Dr. Lezrek Hahn, Foothill Medical Center, Calgary, Canada. I am thank-

ful to Mr. Ward Board, Sales Representative of Innomed Christi, who are the trade-in owners of this machine, have very kindly agreed to do-

nate this machine to IOMP.

Fred Asprino, Jupiter Medical Center, Radiation Oncology, Jupiter, FL, USA has very gen-

erously offered 3 units of Nuclear Associates 37-720 electrometer (dual channel) for diode measurements. Sun Nuclear PDM, patient dose monitor for diodes(4 channel), Victoreen 471 survey meter, needs repair, Holaday microwave survey meter, model HI-1600 and Lumisys 75 film scanner. This equipment donation from Jupiter Medical Center, Radiation Oncology is being shipped to Idaho State University, Col-

lege on Engineering, ATTN: Dr. Jay Kunze, Dean, Pocatello, ID 83209. Idaho State Univer-

sity is making a museum of old instruments.

In the last report, I forgot to mention the name of my friend, Charles Narayanan, physicist at the Reid Hospital, Richmond who was the do-

nor for the CMS TPS shipped to India. He has been very helpful to me in getting used equipment and its shipment. I am very sorry for the mistake.

Used equipment needed:

- Linear accelerator, Theratron 780 Co-60, Automatic film pro-

cessor, block cutter, patient dose monitor and ultrasound machine.

Shipping arrangements:

- The institutions need used equip-

ment should mention in their re-

sponse that they would pay or make arrangements for shipping at a very short notice.

Dr. Aji Kumar Shukla from In-

dia will be helping me in IOMP efforts to deliver quality service in getting and transferring used equipment from generous donors to those who need them badly. He can be reached at Department of Nuclear Medicine, SGP/GMS, Raebarelli Road, Lucknow (UP), 226014, INDIA. His phone number is 91-0522- 2668700 extension 2615 and email address is akshukla@sgpgi.ac.in.

The equipment donated to IOMP Used Equipment Donation Pro-

gram is generally in good work-

ing condition but we don’t guar-

ante its usefulness. The dona-

tion of used equipment to IOMP are sometime tax deductible.

Our webpages has a space for used equipment program. Please visit, I will be able to post a list of available used equipment but most of it comes to me at a very short notice, so it may not be there. A list of donated equip-

ment will also be posted.

If you want to donate or want some used equipment donated to your organization, please contact Mohammed K. Zaidi, Profes-

sional Relations Committee at our website www.iomp.org.

New Victoreen® Double Check® Pro Daily Check Device streamlines daily radiation oncology QA workload.

Efficient workload planning

- Flexible weekly scheduling, user created protocols

State-of-the-art communications

- Ethernet, USB, Wireless

Limited data storage flash memory

- Removable flash memory, 31 days editing

User-friendly interface

- Windows®, CE, large color touch screen

Thorough data analysis

- Flatness, symmetry, constancy, chart, graphical data presentation

Complete standalone operation

- Integrated CPU, memory color display, touch screen presentation

Ask about our popular trade-in program.

Call 440.248.9300 or visit www.flukebiomedical.com/rms.
High Cholesterol Levels May Speed Prostate Cancer Lociing, slow growth, and improved overall survival. The study also indicated that cholesterol may have a role in the development of prostate cancer, suggesting that lowering cholesterol levels may be beneficial in reducing the risk of prostate cancer.

Cryoablation, a Prostate Cancer Treatment
Cryoablation is a non-surgical treatment that involves freezing the prostate gland using a series of needles inserted into the gland. The needles are cooled to temperatures below freezing, causing the cells in the prostate to freeze and die. The procedure is typically performed on an outpatient basis and does not require hospitalization. Cryoablation has been shown to be effective in treating early-stage prostate cancer, and it is often recommended as an alternative to surgical or radiation treatments.

A Cold Approach to Prostate Cancer
Cryoablation has several advantages over traditional treatments. It is a non-invasive procedure, with minimal side effects. Patients typically return to normal activities within two weeks of the procedure. In addition, cryoablation can be used as a salvage treatment for patients who have not responded to other treatments. Cryoablation is also an option for patients who are not candidates for surgery or radiation.

Electa Ad Use old negs dec’04
Complete solutions

supported with advanced technologies.

IPPS™ Indexed Patient Positioning Systems™
Precise and reproducible patient posture from imaging through treatment can be achieved with IPPS.

OneDose™ patient dosimetry system
This wireless handheld dosimetry system offers an immediate readout while utilizing easy-to-use disposable dosimeters.

ACCUCORD™ implanted fiducial tumor localization
Sub-millimeter localization accuracy can be achieved with the ACCUCORD™ patient localization system.

TOMORROW’S DAILY QA TODAY. FAST, PRECISE AND WIRE-FREE.

The fast, reliable solution for daily QA.
qa.beamchecker.com

000-842-8688 • 712.737.8688 • www.medtec.com
© 2005 MEDTEC
The present study done on 16200 women aged 40 or over at the Papanicolaou screening sites in Sweden, the United States, and France found that the risk of breast cancer was 27% lower among women who used the pill in the past than among women who had never used the pill. The risk of ovarian cancer was 30% lower among users of the pill compared to non-users. Moreover, the risk of uterine cancer was 42% lower among women taking the pill. These findings support the hypothesis that hormone replacement therapy (HRT) reduces the risk of breast cancer.

Treasurer’s and Finance Committee Report 2004 – George Marsko, Ph.D. Treasurer IOMP

The IOMP treasury started 2004 with a balance of US$106,646 and completed the year with US$112,568 for a net surplus of $5,922. Our income was mostly from national organization dues, $39,416 and expenditures amounted to $34,044. A breakdown of the expenditures is provided in the following chart:

2005 Summary of Budget Expenditures (US$90,400)

<table>
<thead>
<tr>
<th>Category</th>
<th>Budget Expenditures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Professional Relations</td>
<td>$10,000</td>
</tr>
<tr>
<td>Publications</td>
<td>$1,000</td>
</tr>
<tr>
<td>Education & Training</td>
<td>$10,000</td>
</tr>
<tr>
<td>Membership Dues</td>
<td>$21,105</td>
</tr>
<tr>
<td>Officer Travel</td>
<td>$2,298</td>
</tr>
<tr>
<td>Science Committee</td>
<td>$9,928</td>
</tr>
<tr>
<td>Other</td>
<td>$6,063</td>
</tr>
<tr>
<td>Bank Charges</td>
<td>$22,577</td>
</tr>
<tr>
<td>Use old negs dec’04</td>
<td>$1,500</td>
</tr>
<tr>
<td>2004 IUPESM</td>
<td>$1,000</td>
</tr>
<tr>
<td>2005 IUPESM</td>
<td>$1,000</td>
</tr>
<tr>
<td>Other</td>
<td>$25,900</td>
</tr>
<tr>
<td>Sum total</td>
<td>$90,400</td>
</tr>
</tbody>
</table>

For 2005, income is projected at $50,050 and expenses at $49,950. The budgeted operating expenses are summarized in this chart:

Details about the 2005 budget can be found at http://www.iomp.org/budget.htm.

Currently the members of the Finance Committee are Dr. George Marsko, Chair (Canada), Dr. Nisakorn Manatrakul, (Thailand), Dr. James B. Smathers, (USA), Dr. George Mawko, Chair (Canada), Dr. Nisakorn Manatrakul, (Thailand), Dr. James B. Smathers, (USA), Dr. Peter H.S. Smith, IOMP (IEG) (UK) and Dr. Mohidad Charlottesville, (USA). Dr. Charlottesville joined this committee in 2004 as its inaugural Corporate Liaison Officer, responsible for corporate membership recruitment and retention. The Finance Committee has been actively involved in planning the 2005 budget as well as seeking additional streams of revenue in order to provide a stable long-term source of funds for IOMP programs and activities.

New Test for Breast Cancer:

Magnetic resonance imaging (MRI) was good in detecting cancer but less effective at ruling out malignancies. MRI beats mammography in distinguishing benign from malignant breast tumors, but it is less certain than mammography for microcalcifications. MRI is still useful in identifying patients at high risk for breast cancer.

Oral Contraceptive (Pill) Cuts Cancer, Coronary Risk:

The pill has been shown to reduce the risk of breast cancer by 27% and the risk of ovarian cancer by 30%. The pill also reduces the risk of uterine cancer by 42%.

Heart Attack Risk:

One of the added advantages to routine colon cancer screening, the Computed Tomographic (CT) colonography, or virtual colonoscopy usually detects colon cancer and can also detect heart attack risk. Dr. Davila used this scanning to measure calcium deposits within the aorta and its branching vessels without additional testing.

Trastuzumab

Trastuzumab is an example of a “targeted” therapy, entering clinical trials on the target HER-2 protein, the replacement for trastuzumab. Breast cancer is the most commonly diagnosed cancer in women and the second leading cause of cancer-related death in women in the United States. The following has been compiled by Mohammad K. Zaidi, Member, IOMP Professional Relations Committee.

Vaccine for Cervical Cancer:

Merck’s and GlaxoSmithKline have been awarded rights to develop the vaccine to protect ladies with cancer of cervix. Cervical cancer strikes nearly half a million women worldwide each year and kills about half. Virtually all cases are caused by infection with human papilloma virus, or HPV, which is spread through sex. It will be administered to a young age so that they are protected before they have any sex. The hepatitis B vaccine has dramatically reduced the number of infections that progress to liver cancer. It is also being researched to help cure genital warts in men and women and penile and anal cancers in men. Another research effort shows that the cells can destroy unwanted proteins, it will help scientists to develop new medicines for cancer and other diseases. It is reported that they will be able to manipulate the protein degradation system in two different ways - either to prevent it from destroying proteins that boost the immune system, or to get rid of proteins that help cause diseases. [ISJ, 11/01/2004; Bioc.Biop.Res.Comm, 1978, 78 (4), 1100-05; MDS/Nordion].

Editors’ Corner – (continued from page 8)

Not allow for a separate analysis of this group. Chemotherapy of the type given in these studies has a low, possible risk of congestive heart failure (weakening of the heart muscle) of less than 1 percent. In these studies, the likelihood of congestive heart failure in women receiving the combination of chemotherapeutic and trastuzumab was increased by 3% to 4%. Patients in these studies will continue to be followed for any additional side effects. Additional safety data will be presented at ASCO. Trastuzumab is an example of a “targeted” therapy, an agent that is directed against a specific change in the cancer cell. Trastuzumab was approved for the treatment of advanced breast cancer in 1998. An estimated 211,240 women will be diagnosed with breast cancer in the United States in 2005. Of these, about 30 percent have lymph node-positive breast cancer, and about 20 percent to 30 percent of these tumors overexpress the HER-2 protein, the target for trastuzumab. Breast cancer is the most commonly diagnosed cancer in women and the second leading cause of cancer-related death in women in the United States, accounting for about 15 percent of all cancer-related deaths in women in the nation.

The following has been compiled by Mohammad K. Zaidi, Member, IOMP Professional Relations Committee.